Дрейф генов. Определение Дрейф генов, или генетико- автоматические процессы, явление ненаправленного изменения частот аллельных вариантов генов в популяции, - презентация

ДРЕЙФ ГЕНОВ

Иногда эта концепция называется «эффект Сьюэлла - Райта», в честь предложивших ее двух популяционных генетиков. После того как Мендель доказал, что гены являются единицами наследственности, а Харди и Вайнберг продемонстрировали механизм их поведения, биологи поняли, что эволюция признаков может происходить не только посредством естественного отбора, но и случайно. Дрейф генов зависит от того, что изменение частоты аллелей в малых популяциях обусловлено исключительно случаем. Если число скрещиваний невелико, тогда реальное соотношение различных аллелей гена может сильно отличаться от рассчитанного на основе теоретической модели. Дрейф генов - это один из факторов, нарушающих равновесие Харди - Вайнберга.

На большие популяции со случайным скрещиванием огромное воздействие оказывает естественный отбор. В этих группах отбираются особи с адаптивными признаками, а другие безжалостно отсеиваются, и популяция методом естественного отбора становится более приспособленной к окружающей среде. В малых популяциях идут другие процессы и на них влияют другие факторы. Например, в малых популяциях велика вероятность случайного изменения частоты генов. Такие изменения не вызваны естественным отбором. Понятие дрейфа генов очень важно для малых популяций, поскольку они имеют малый генофонд. Это значит, что случайное исчезновение или появление аллеля гена у потомства приведет к значительным изменениям в генофонде. В больших популяциях такие колебания не приводят к заметным результатам, поскольку уравновешиваются большим числом скрещиваний и притоком генов со стороны других особей. В малых популяциях случайные события могут привести к эффекту «бутылочного горлышка».

Согласно определению, под дрейфом генов понимают случайные изменения генных частот, вызванные малой численностью популяции и нечастым скрещиванием. Дрейф генов наблюдается среди малых популяций, например, у островных переселенцев, у коала или больших панд.

См. также статьи «Эффект "бутылочного горлышка"», «Равновесие Харди - Вайнберга», «Менделизм», «Естественный отбор».

Из книги ЧЕЛОВЕК - ты, я и первозданный автора Линдблад Ян

Глава 10 Следы, оставленные три с половиной миллиона лет назад! Дарт, Брум и современные исследователи. Дрейф континентов. Поименный список гоминидов. Люси и ее сородичи. Столь длительная сохранность доисторических следов у Лаетоли – случай фантастический, но не

Из книги Генетика окрасов собак автора Робинсон Рой

СРАВНИТЕЛЬНАЯ СИМВОЛИКА ГЕНОВ Читатели, которые интересуются литературой по генетике, рано или поздно сталкиваются с проблемой путаницы в обозначениях генов. Дело в том, что различные авторы пользуются различными символами для обозначения одного и того же гена. Это

Из книги Генетика этики и эстетики автора Эфроимсон Владимир Павлович

Из книги Эволюция автора Дженкинс Мортон

ДРЕЙФ МАТЕРИКОВ В 1912 году немецкий ученый Альфред Вегенер предположил, что около 200 миллионов лет назад все материки Земли составляли единый массив суши, который он назвал Пангеей. В последующие 200 миллионов лет Пангея разделилась на несколько материков, которые стали

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Из книги Эволюция [Классические идеи в свете новых открытий] автора

Нейтральные мутации и генетический дрейф - движение без правил Ландшафт приспособленности - образ яркий и полезный, но, как и всякая модель, он несовершенен. Многие аспекты эволюционного процесса с его помощью отразить трудно или невозможно. Реальный ландшафт

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

Дрейф и отбор: кто кого? Генетический дрейф царствует над нейтральными мутациями (аллелями), отбор - над полезными и вредными. Отбор, повышающий частоту полезных мутаций, называют положительным. Отбор, отбраковывающий вредные мутации, - отрицательным, или

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Дупликация генов МНОГОФУНКЦИОНАЛЬНЫЕ ГЕНЫ - ОСНОВА ЭВОЛЮЦИОННЫХ НОВШЕСТВ.Мысль о том, что дупликация генов служит важнейшим источником эволюционных новшеств, была высказана еще в 1930-е годы выдающимся биологом Джоном Холдейном (Haldane, 1933). Сегодня в этом нет никаких

Из книги Эволюция человека. Книга 1. Обезьяны, кости и гены автора Марков Александр Владимирович

ГЛАВА 3 Эволюция земной коры. Дрейф континентов и спрединг океанического дна. Мантийная конвекция Горные породы, формирующие кору Земли, как мы помним, бывают изверженные - первичные, образовавшиеся при охлаждении и затвердевании магмы, и осадочные - вторичные,

Из книги Эволюция человека. Книга 2. Обезьяны, нейроны и душа автора Марков Александр Владимирович

1. Промоторы генов В этом разделе мы кратко расскажем о том, какие нуклеотидные последовательности, прилегающие к генам, а иногда и внутри гена, ответственны за процесс транскрипции. У прокариот эти участки, с которыми связывается молекула РНК-полимеразы и откуда

Из книги Коннектом. Как мозг делает нас тем, что мы есть автора Сеунг Себастьян

Изменения активности генов Эволюция животных в целом и приматов в частности протекает не столько за счет изменения структуры белок-кодирующих генов, сколько за счет изменения их активности. Небольшое изменение в верхних этажах иерархически организованных

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора Курчанов Николай Анатольевич

В поисках "генов доброты" Мы уже знаем, что, если закапать человеку в нос окситоцин, у него повышаются доверчивость и щедрость. Еще мы знаем, что эти черты характера являются отчасти наследственными. Исходя их этих фактов, естественно предположить, что те или иные варианты

Из книги автора

Глава 6. Разведение генов …воспитывавшихся в разных приемных семьях. Bouchard et al., 1990.…чем у изучавшихся пар людей, выбранных случайным образом. Строго говоря, корректное сравнение следует проводить с двумя представителями различных пар однояйцевых близнецов, выросших

Из книги автора

4.3. Взаимодействие генов В организме одновременно функционирует множество генов. В процессах реализации генетической информации в признак возможны многочисленные «пункты» взаимодействия разных генов на уровне биохимических реакций. Такие взаимодействия неизбежно

Из книги автора

7.1. Выделение генов Возможно использование нескольких путей выделения генов. Каждый из них имеет свои достоинства и недостатки.Химический синтез генов, т. е. синтез нуклеотидов с заданной последовательностью, соответствующей одному гену, впервые был осуществлен в

Из книги автора

8.4. Эволюция генов и геномов Анализ структуры и изменчивости генетического материала служит основой для различных теорий эволюции гена как элементарного носителя генетической информации. Какова была исходная организация гена? Или, другими словами, обусловлены ли

Обусловленное случайными статистическими причинами.

Один из механизмов дрейфа генов заключается в следующем. В процессе размножения в популяции образуется большое число половых клеток - гамет . Большая часть этих гамет не формирует зигот . Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения.

Дрейф генов на примере

Механизм дрейфа генов может быть продемонстрирован на небольшом примере. Представим очень большую колонию бактерий, находящуюся изолированно в капле раствора. Бактерии генетически идентичны за исключением одного гена с двумя аллелями A и B . Аллель A присутствует у одной половины бактерий, аллель B - у другой. Поэтому частота аллелей A и B равна 1/2. A и B - нейтральные аллели, они не влияют на выживаемость или размножение бактерий. Таким образом, все бактерии в колонии имеют одинаковые шансы на выживание и размножение.

Затем размер капли уменьшаем таким образом, чтобы питания хватало лишь для 4 бактерий. Все остальные умирают без размножения. Среди четырёх выживших возможно 16 комбинаций для аллелей A и B :

(A-A-A-A), (B-A-A-A), (A-B-A-A), (B-B-A-A),
(A-A-B-A), (B-A-B-A), (A-B-B-A), (B-B-B-A),
(A-A-A-B), (B-A-A-B), (A-B-A-B), (B-B-A-B),
(A-A-B-B), (B-A-B-B), (A-B-B-B), (B-B-B-B).

Вероятность каждой из комбинаций

где 1/2 (вероятность аллеля A или B для каждой выжившей бактерии) перемножается 4 раза (общий размер результирующей популяции выживших бактерий)

Если сгруппировать варианты по числу аллелей, то получится следующая таблица:

Как видно из таблицы, в шести вариантах из 16 в колонии будет одинаковое количество аллелей A и B . Вероятность такого события 6/16. Вероятность всех прочих вариантов, где количество аллелей A и B неодинаково несколько выше и составляет 10/16.

Дрейф генов происходит при изменении частот аллелей в популяции из-за случайных событий. В данном примере популяция бактерий сократилась до 4 выживших (эффект бутылочного горлышка). Сначала колония имела одинаковые частоты аллелей A и B , но шансы, что частоты изменятся (колония подвергнется дрейфу генов) выше, чем шансы на сохранение оригинальной частоты аллелей. Также существует высокая вероятность (2/16), что в результате дрейфа генов один аллель будет утрачен полностью.

Экспериментальное доказательство С. Райта

С. Райт экспериментально доказал, что в маленьких популяциях частота мутантного аллеля меняется быстро и случайным образом. Его опыт был прост: в пробирки с кормом он посадил по две самки и по два самца мух дрозофил, гетерозиготных по гену А (их генотип можно записать Аа). В этих искусственно созданных популяциях концентрация нормального (А) и мутационного (а) аллелей составила 50 %. Через несколько поколений оказалось, что в некоторых популяциях все особи стали гомозиготными по мутантному аллелю (а), в других популяциях он был вовсе утрачен, и, наконец, часть популяций содержала как нормальный, так и мутантный аллель. Важно подчеркнуть, что, несмотря на снижение жизнеспособности мутантных особей и, следовательно, вопреки естественному отбору, в некоторых популяциях мутантный аллель полностью вытеснил нормальный. Это и есть результат случайного процесса - дрейфа генов .

Литература

  • Воронцов Н.Н., Сухорукова Л.Н. Эволюция органического мира. - М .: Наука, 1996. - С. 93-96. - ISBN 5-02-006043-7
  • Грин Н., Стаут У., Тейлор Д. Биология. В 3 томах. Том 2. - М .: Мир, 1996. - С. 287-288. - ISBN 5-03-001602-3

ДРЕЙФ ГЕНОВ, генетический дрейф (от голландского drijven - гнать, плавать), случайные колебания частоты аллелей гена в ряду поколений популяции с ограниченной численностью. Дрейф генов был установлен в 1931 году одновременно и независимо С. Райтом, предложившим этот термин, и российскими генетиками Д. Д. Ромашовым и Н. П. Дубининым, назвавшими такие колебания «генетико-автоматическими процессами». Причина дрейфа генов - вероятностный характер процесса оплодотворения на фоне ограниченного числа потомков. Величина колебаний частоты аллеля в каждом поколении обратно пропорциональна числу особей в популяции и прямо пропорциональна произведению частот аллелей гена. Такие параметры дрейфа генов теоретически должны приводить к сохранению в генофонде только одного из 2 или более аллелей гена, причём какой из них сохранится - событие вероятностное. Дрейф генов, как правило, снижает уровень генетической изменчивости и в малочисленных популяциях приводит к гомозиготности всех особей по одному аллелю; скорость этого процесса тем больше, чем меньше число особей в популяции. Эффект дрейфа генов, смоделированный на ЭВМ, подтверждён как экспериментально, так и в природных условиях на многих видах организмов, включая человека. Например, в самой малочисленной популяции эскимосов Гренландии (около 400 человек) абсолютное большинство представителей имеет группу крови 0 (I), то есть являются гомозиготными по аллелю I0, почти «вытеснившему» другие аллели. В 2 популяциях намного большей численности с существенной частотой представлены все аллели гена (I0, IA и IB) и все группы крови системы AB0. Дрейф генов в постоянно малочисленных популяциях нередко приводит к их вымиранию, что является причиной относительно кратковременного существования демов. В результате уменьшения резерва изменчивости такие популяции оказываются в неблагоприятной ситуации при изменении условий среды. Это обусловлено не только низким уровнем генетической изменчивости, но и наличием неблагоприятных аллелей, постоянно возникающих в результате мутаций. Уменьшение изменчивости отдельных популяций за счёт дрейфа генов может частично компенсироваться на уровне вида в целом. Так как в разных популяциях фиксируются разные аллели, генофонд вида остаётся разнообразным даже на низком уровне гетерозиготности каждой популяции. Кроме того, в небольших популяциях могут закрепляться аллели с малым адаптивным значением, которые, однако, при изменении среды будут определять приспособленность к новым условиям существования и обеспечивать сохранение вида. В целом дрейф генов является элементарным эволюционным фактором, вызывает длительные и направленные изменения генофонда, хотя сам по себе и не имеет приспособительного характера. Случайные изменения частот аллелей происходят и при резком однократном снижении популяционной численности (в результате катастрофических событий или миграции части популяции). Это не является дрейфом генов и обозначается как «эффект горлышка бутылки» или «эффект основателя». У человека такие эффекты лежат в основе повышенной встречаемости отдельных наследственных болезней в некоторых популяциях и этнических группах.

Лит.: Кайданов Л.З. Генетика популяций. М., 1996.


Чтобы частота аллеля росла, должны действовать определенные факторы - дрейф генов, миграция и естественный отбор.

Дрейф генов - это случайный ненаправленный рост какого-либо аллеля при воздействии нескольких событий. Данный процесс связывается с тем, что не все лица в популяции принимают участие в размножении.

Дрейфом генов в узком смысле слова Сьюэлл Райт назвал случайное изменение частоты аллелей при смене поколений в малых изолированных популяциях. В малых популяциях велика роль отдельных особей. Случайная гибель одной особи может привести к значительному изменению аллелофонда. Чем меньше популяция, тем больше вероятность флуктуации – случайного изменения частот аллелей. В сверхмалых популяциях по совершенно случайным причинам мутантный аллель может занять место нормального аллеля, т.е. происходит случайная фиксация мутантного аллеля.

В отечественной биологии случайное изменение частоты аллеля в сверхмалых популяциях некоторое время называли генетико-автоматическими (Н.П. Дубинин) или стохастическими процессами (А.С. Серебровский). Эти процессы были открыты и изучались независимо от С. Райта.

Дрейф генов доказан в лабораторных условиях. Например, в одном из С. Райта опытов с дрозофилой было заложено 108 микропопуляций – по 8 пар мушек в пробирке. Начальные частоты нормального и мутантного аллелей были равны 0,5. В течение 17 поколений случайным образом в каждой микропопуляции оставляли 8 пар мушек. По окончании эксперимента оказалось, что в большинстве пробирок сохранился только нормальный аллель, в 10 пробирках – оба аллеля, а в 3 пробирках произошла фиксация мутантного аллеля.

Можно рассматривать дрейф генов как один из факторов эволюции популяций. Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Поэтому результаты дрейфа оказываются разными в разных популяциях – в одних фиксируется один набор аллелей, в других – другой. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны - к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования.

В ходе эволюции популяций дрейф генов взаимодействует с другими факторами эволюции, прежде всего с естественным отбором. Соотношение вкладов этих двух факторов зависит как от интенсивности отбора, так и от численности популяций. При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен.

Как мы уже знаем, наиболее частым последствием дрейфа генов является обеднение генетического разнообразия внутри популяций за счет фиксации одних аллелей и утраты других. Мутационный процесс, напротив, приводит к обогащению генетического разнообразия внутри популяций. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования.

Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А , а в другой а , то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие.


  1. Причины дрейфа генов

  • Популяционные волны и дрейф генов
Численность популяций редко остается постоянной во времени. За подъемами численности следуют спады. С.С.Четвериков одним из первых обратил внимание на периодические колебания численности природных популяций, популяционные волны. Они играют очень важную роль в эволюции популяций. Дрейф генов мало сказывается на частотах аллелей в многочисленных популяциях. Однако в периоды резкого спада численности его роль сильно возрастает. В такие моменты он может становиться решающим фактором эволюции. В период спада частота определенных аллелей может резко и непредсказуемо меняться. Может происходить утеря тех или иных аллелей и резкое обеднение генетического разнообразия популяций. Потом, когда численность популяции начинает возрастать, популяция будет из поколения в поколение воспроизводить ту генетическую структуру, которая установилась в момент прохождения через «бутылочное горлышко» численности.

Примером могут служить ситуация с гепардами – представителями кошачьих. Ученые обнаружили, что генетическая структура всех современных популяций гепардов очень сходна. При этом генетическая изменчивость внутри каждой из популяций крайне низка. Эти особенности генетической структуры популяций гепардов можно объяснить, если предположить, что относительно недавно (пару сотен лет назад) данный вид прошел через очень узкое горлышко численности, и все современные гепарды являются потомками нескольких (по подсчетам американских исследователей, 7) особей.

Рис 1. Эффект «бутылочного горлышка»

Эффект бутылочного горлышка сыграл, по-видимому, очень значительную роль в эволюции популяций человека. Предки современных людей в течение десятков тысяч лет расселялись по всему миру. На этом пути, множество популяций полностью вымирало. Даже те, которые уцелели, часто оказывались на грани вымирания. Их численность падала до критического уровня. Во время прохождения через «бутылочное горлышко» численности частоты аллелей менялись по-разному в разных популяциях. Определенные аллели утрачивались полностью в одних популяциях и фиксировались в других. После восстановления численности популяций их измененная генетическая структура воспроизводилась из поколения в поколение. Эти процессы, по-видимому, и обусловили, то мозаичное распределение некоторых аллелей, которое мы сегодня наблюдаем в локальных популяциях человека. Ниже представлено распределение аллеляВ по системе групп крови АВ0 у людей. Значительные отличия современных популяций друг от друга могут отражать последствия дрейфа генов, который происходил в доисторические времена в моменты прохождения предковых популяций через «бутылочное горлышко» численности.


  • Эффект основателя. Животные и растения, как правило, проникают на новые для вида территории (на острова, на новые континенты) относительно малыми группами. Частоты тех или иных аллелей таких группах могут значительно отличаться от частот этих аллелей в исходных популяциях. За вселением на новую территорию следует увеличение численности колонистов. Возникающие многочисленные популяции воспроизводит генетическую структуру их основателей. Это явление американский зоолог Эрнст Майр, один их основоположников синтетической теории эволюции, назвал эффектом основателя .


Рис 2. Частота аллеля В по системе групп крови АВ0 в популяциях людей

Эффект основателя играл, по-видимому, ведущую роль в формировании генетической структуры видов животных и растений, населяющих вулканические и коралловые острова. Все эти виды происходят от очень небольших групп основателей, которым посчастливилось достигнуть островов. Ясно, что эти основатели представляли собой очень маленькие выборки из родительских популяций и частоты аллелей в этих выборках могли сильно отличаться. Вспомним наш гипотетический пример с лисицами, которые, дрейфуя на льдинах, попадали на необитаемые острова. В каждой из дочерних популяций частоты аллелей резко отличались друг от друга и от родительской популяции. Именно эффект основателя объясняет удивительно разнообразие океанических фаун и флор и обилие эндемичных видов на островах. Эффект основателя сыграл важную роль и в эволюции человеческих популяций. Обратите внимание, что аллельВ полностью отсутствует у американских индейцев и у аборигенов Австралии. Эти континенты были заселены небольшими группами людей. В силу чисто случайных причин среди основателей этих популяций могло не оказаться ни одного носителя аллеля В . Естественно, этот аллелей отсутствует и в производных популяциях.


  • Длительная изоляция
Предположительно человеческие популяции в палеолите состояли из нескольких сотен индивидуумов. Всего одно-два столетия тому назад люди жили преимущественно поселениями в 25-35 домов. Вплоть до самого последнего времени количество индивидуумов в отдельных популяциях, непосредственно участвующих в размножении, редко превышало 400-3500 человек. Причины географического, экономического, расового, религиозного, культурного порядка ограничивали брачные связи масштабами определенного района, племени, поселения, секты. Высокая степень репродуктивной изоляции малочисленных человеческих популяций на протяжении многих поколений создавала благоприятные условия для дрейфа генов.

  1. Среди жителей Памира резус-отрицательные индивидуумы встречаются в 2-3 раза реже, чем в Европе. В большинстве кишлаков такие люди составляют 3-5% популяции. В некоторых изолированных селениях, однако, их насчитывается до 15%, т.е. примерно как в европейской популяции.

  2. лены секты амишей в округе Ланкастер штата Пенсильвания, насчитывающей к середине девятнадцатого века примерно 8000 человек, почти все произошли от трех супружеских пар, иммигрировавших в Америку в 1770 г. В этом изоляте обнаружено 55 случаев особой формы карликовости с многопалостью, которая наследуется по аутосомно-рецессивному типу. Эта аномалия не зарегистирирована среди амишей штатов Огайо и Индиана. В мировой медицинской литературе описано едва ли 50 таких случаев. Очевидно, среди членов первых трех семей, основавших популяцию, находился носитель соответствующего рецессивного мутантного аллеля - «родоначальник» соответствующего фенотипа.

  3. В XVIII в. из Германии в США иммигрировало 27 семей, основавших в штате Пенсильвания секту дункеров. За 200-летний период существования в условиях сильной брачной изоляции генофонд популяции дункеров изменился в сравнении с генофондом населения Рейнской области Германии, из которой они произошли. При этом степень различий во времени увеличивалась. У лиц в возрасте 55 лет и выше частоты аллелей системы групп крови MN ближе к цифрам, типичным для населения Рейнской области, чем у лиц в возрасте 28-55 лет. В возрастной группе 3-27 лет сдвиг достигает еще больших значений (табл. 1).
Таблица 1. Прогрессивное изменение концентрации аллелей системы

групп крови MN в популяции дункеров

Рост среди дункеров лиц с группой крови М и снижение - с группой крови N нельзя объяснить действием отбора, так как направление изменений не совпадает с таковым в целом для населения штата Пенсильвания. В пользу дрейфа генов говорит также то, что в генофонде американских дункеров увеличилась концентрация аллелей, контролирующих развитие заведомо биологически нейтральных признаков, например оволосения средней фаланги пальцев, способности отставлять большой палец кисти (рис.3).

Рис. 3. Распространение нейтральных признаков в изоляте дункеров штата Пенсильвания:

а- рост волос на средней фаланге пальцев кисти, б- способность отставлять большой палец кисти
3. Значение дрейфа генов

Последствия дрейфа генов могут быть различными.

Во-первых, может возрастать генетическая однородность популяции, т.е. ее гомозиготность. Кроме того, популяции, сначала имеющие сходный генетический состав и обитающие в сходных условиях, могут в результате дрейфа различных генов утратить первоначальное сходство.

Во-вторых, вследствие дрейфа генов, вопреки естественному отбору, в популяции может удерживаться аллель, снижающий жизнеспособность особей.

В-третьих, благодаря популяционным волнам может происходить быстрое и резкое возрастание концентраций редких аллелей.

На протяжении большей части истории человечества дрейф генов оказывал влияние на генофонды популяций людей. Так, многие особенности узкоместных типов в пределах арктической, байкальской, центрально-азиатской, уральской групп населения Сибири являются, по-видимому, результатом генетико-автоматических процессов в условиях изоляции малочисленных коллективов. Эти процессы, однако, не имели решающего значения в эволюции человека.

Последствия дрейфа генов, представляющие интерес для медицины, заключаются в неравномерном распределении по группам населения Земного шара некоторых наследственных заболеваний. Так, изоляцией и дрейфом генов объясняется, по-видимому, относительно высокая частота церебромакулярной дегенерации в Квебеке и Ньюфаундленде, детского цестиноза во Франции, алкаптонурии в Чехии, одного из типов порфирии среди европеоидного населения в Южной Америке, адреногенитального синдрома у эскимосов. Эти же факторы могли быть причиной низкой частоты фенилкетонурии у финнов и евреев-ашкенази.

Изменение генетического состава популяции вследствие генетико-автоматических процессов приводит к гомозиготизации индивидуумов. При этом чаще фенотипические последствия оказываются неблагоприятными. Вместе с тем следует помнить, что возможно образование и благоприятных комбинаций аллелей. В качестве примера рассмотрим родословные Тутанхамона (рис. 12.6) и Клеопатры VII (рис. 4), в которых близкородственные браки были правилом на протяжении многих поколений.

Тутанхамон умер в возрасте 18 лет. Анализ его изображения в детском возрасте и подписи к этому изображению позволяют предположить, что он страдал генетическим заболеванием - целиакией, которая проявляется в изменении слизистой оболочки кишечника, исключающем всасывание клейковины. Тутанхамон родился от брака Аменофиса III и Синтамоне, которая была дочерью Аменофиса III. Таким образом, мать фараона была его сводной сестрой. В могильном склепе Тутанхамона обнаружены мумии двух, по всей видимости мертворожденных, детей от брака с Анкесенамон, его племянницей. Первая жена фараона была или его сестрой, или дочерью. Брат Тутанхамона Аменофис IV предположительно страдал болезнью Фрелиха и умер в 25-26 лет. Его дети от браков с Нефертити и Анкесенамон (его дочерью) были бесплодны. С другой стороны, известная своим умом и красотой Клеопатра VII была рождена в браке сына Птоломея Х и его родной сестры, которому предшествовали кровнородственные браки на протяжении по крайней мере шести поколений.


Рис. 4. Родословная фараона XVIII династии Тутанхамона Рис. 5. Родословная Клеопатры VII