2 соляная кислота приготовление. Соляная кислота

В анализах методом нейтрализации применяют 0,1 н. и 0,5 н. точные растворы серной и соляной кислот, а в других методах анализа, например в окислительно-восстановительном, часто используют 2 н. приблизительные растворы этих кислот.

Для быстрого приготовления точных растворов удобно пользоваться фиксаналами, представляющими собой навески (0,1 г-экв или 0,01 г-экв) химически чистых веществ, взвешенные с точностью до четырех-пяти значащих цифр, находящиеся в запаянных стеклянных ампулах. При приготовлении 1 л. раствора из фиксанала получают 0,1 н. или 0,01 н. растворы. Небольшие количества растворов соляной и серной кислот 0,1 н. концентрации можно готовить из фиксаналов. Стандартные растворы, приготовленные из фиксаналов, обычно служат для установления или проверки концентрации других растворов. Фиксаналы кислот можно хранить долгое время.

Для приготовления точного раствора из фиксанала ампулу обмывают теплой водой, смывая с нее надпись или этикетку, и хорошо обтирают. Если надпись сделана краской, то ее удаляют тряпочкой, смоченной спиртом. В мерную колбу емкостью 1 л. вставляют стеклянную воронку, а в нее - стеклянный боек, острый конец которого должен быть направлен вверх. После этого ампулу с фиксаналом слегка ударяют тонким дном об острие бойка или дают ей свободно падать, чтобы дно разбилось при ударе об острие. Затем стеклянным штырем с заостренным концом разбивают тонкую стенку углубления в верхней части ампулы и дают содержащейся в ампуле жидкости вытечь. Потом ампулу, находящуюся в воронке, тщательно промывают дистиллированной водой из промывалки, после чего удаляют из воронки, промывают воронку и удаляют ее из колбы, а раствор в колбе доливают до метки дистиллированной водой, закрывают пробкой и перемешивают.

При приготовлении растворов из сухих фиксаналов (например, из фиксанала щавелевой кислоты) берут сухую воронку, чтобы содержимое ампулы можно было при легком встряхивании пересыпать в колбу. После того как вещество перенесут в колбу, промывают ампулу и воронку, растворяют вещество в воде, находящейся в колбе, и доводят объем раствора дистиллированной водой до метки.

Большие количества 0,1 н. и 0,5 н. растворов соляной и серной кислот, а также приблизительные растворы этих кислот (2 н. и др.) готовят из концентрированных химически чистых кислот. Вначале ареометром или денсиметром определяют плотность концентрированной кислоты.

По плотности в справочных таблицах находят концентрацию кислоты (содержание хлористого водорода в соляной кислоте или моногидрата в серной), выраженную в граммах на 1 л. По формулам рассчитывают объем концентрированной кислоты, необходимый для приготовления заданного объема кислоты соответствующей концентрации. Расчет проводят с точностью до двух-трех значащих цифр. Количество воды для приготовления раствора определяют по разности объемов раствора и концентрированной кислоты.

Раствор соляной кислоты готовят путем приливания в сосуд для приготовления раствора половины требуемого количества дистиллированной воды, а затем концентрированной кислоты; после перемешивания раствор доливают до полного объема оставшимся количеством воды. Частью второй порции воды ополаскивают мензурку, которой отмеривали кислоту.

Раствор серной кислоты готовят путем медленного приливания концентрированной кислоты при постоянном перемешивании (чтобы не допустить разогревания) к воде, налитой в сосуд из термостойкого стекла. При этом небольшое количество воды оставляют для ополаскивания мензурки, которой отмеривали кислоту, приливая этот остаток в раствор после его охлаждения.

Иногда для химического анализа применяют растворы твердых кислот (щавелевой, винной и др.). Эти растворы готовят растворением в дистиллированной воде навески химически чистой кислоты.

Массу навески кислоты вычисляют по формуле . Объем воды для растворения берут приблизительно равным объему раствора (если растворение ведется не в мерной колбе). Для растворения этих кислот применяют воду, не содержащую углекислого газа.

В таблице по плотности находим содержание хлористого водорода HCl в концентрированной кислоте: Г к = 315 г/л.

Рассчитываем объем концентрированного раствора соляной кислоты:

V к = 36,5N V / Т к = 36,5 0,1 10000 / 315 = 315 мл.

Количество воды, необходимое для приготовления раствора:

V H 2 O = 10000 - 115 = 9885 мл.

Масса навески щавелевой кислоты H2C2O4 2H2O:

63,03N V / 1000 = 63,03 0,1 3000 / 1000 = 12,6 г.

Установление концентрации рабочих растворов кислот можно проводить по карбонату натрия, буре, точному раствору щелочи (титрованному или приготовленному из фиксанала). При установлении концентрации растворов соляной или серной кислот по карбонату натрия или по буре пользуются методом титрования навесок или (реже) методом пипетирования. При методе титрования навесок используют бюретки емкостью 50 или 25 мл.

При установлении концентрации кислот большое значение имеет выбор индикатора. Титрование выполняют в присутствии такого индикатора, у которого переход окраски происходит в интервале pH, соответствующем точке эквивалентности для химической реакции, протекающей при титровании. При взаимодействии сильной кислоты с сильным основанием в качестве индикаторов можно использовать метиловый оранжевый, метиловый красный, фенолфталеин и другие, у которых переход окраски происходит при pH = 4?10.

При взаимодействии сильной кислоты со слабым основанием или с солями слабых кислот и сильных оснований в качестве индикаторов используют такие, у которых переход окраски происходит в кислой среде, например метиловый оранжевый. При взаимодействии слабых кислот с сильными щелочами применяют индикаторы, у которых переход окраски происходит в щелочной среде, например фенолфталеин. Концентрацию раствора нельзя определить титрованием, если при титровании взаимодействует слабая кислота со слабым основанием.

При установлении концентрации соляной или серной кислот по карбонату натрия на аналитических весах в отдельных бюксах берут три-четыре навески безводного химически чистого карбоната натрия с точностью до 0,0002 г. Для установления концентрации 0,1 н. раствора путем титрования из бюретки емкостью 50 мл масса навески должна быть около 0,15 г. Сушкой в сушильном шкафу при 150°С навески доводят до постоянной массы, а затем переносят в конические колбы емкостью 200-250 мл и растворяют в 25 мл дистиллированной воды. Бюксы с остатками карбоната взвешивают и по разности масс определяют точную массу каждой навески.

Титрование раствора карбоната натрия кислотой ведут в присутствии 1-2 капель 0,1%-ного раствора метилового оранжевого (титрование заканчивается в кислой среде) до изменения желтой окраски раствора в оранжево-желтую. При титровании полезно пользоваться раствором - «свидетелем», для приготовления которого в дистиллированную воду, налитую в такую же колбу, как и колба, в которой производится титрование, добавляют одну каплю кислоты из бюретки и столько капель индикатора, сколько его добавляют в титруемый раствор.

Объем дистиллированной воды для приготовления раствора - «свидетеля» должен быть примерно равен объему раствора в колбе в конце титрования.

Нормальную концентрацию кислоты рассчитывают по результатам титрования:

N = 1000m н / Э Na 2 CO 3 V = 1000m н / 52,99V

где m н - масса навески соды, г;

V - объем раствора кислоты (мл), израсходованный на титрование.

Из нескольких опытов берут среднюю сходящуюся величину концентрации.

Предполагаем израсходовать на титрование около 20 мл кислоты.

Масса навески соды:

52,99 0,1 20 / 1000 = 0,1 г.

Пример 4. Навеска карбоната натрия в 0,1482 г оттитрована 28,20 мл раствора соляной кислоты. Определить концентрацию кислоты.

Нормальная концентрация соляной кислоты:

1000 0,1482 / 52,99 28,2 = 0,1012 н.

При установлении концентрации раствора кислоты по карбонату натрия методом пипетирования навеску химически чистого карбоната натрия, предварительно доведенную высушиванием в сушильном шкафу до постоянной массы и взвешенную с точностью до 0,0002 г, растворяют в дистиллированной воде в откалиброванной мерной колбе емкостью 100 мл.

Величина навески при установлении концентрации 0,1 н. раствора кислоты должна быть около 0,5 г (чтобы при растворении получить примерно 0,1 н. раствор). На титрование берут пипеткой 10-25 мл раствора карбоната натрия (в зависимости от емкости бюретки) и 1-2 капли 0,1%-ного раствора метилового оранжевого.

Метод пипетирования часто применяют при установлении концентрации растворов с помощью полумикробюреток емкостью 10 мл с ценой деления 0,02 мл.

Нормальную концентрацию раствора кислоты при ее установлении методом пипетирования по карбонату натрия вычисляют по формуле:

N = 1000m н V 1 / 52,99V к V 2 ,

где m н - масса навески карбоната натрия, г;

V 1 - объем раствора карбоната, взятый на титрование, мл;

V к - объем мерной колбы, в которой производилось растворение навески карбоната;

V 2 - объем раствора кислоты, израсходованный на титрование.

Пример 5. Определить концентрацию раствора серной кислоты, если для ее установления 0,5122 г карбоната натрия было растворено в мерной колбе емкостью 100,00 мл и на титрование 15,00 мл раствора карбоната израсходовано 14,70 мл раствора кислоты (при использовании бюретки емкостью 25 мл).

Нормальная концентрация раствора серной кислоты:

1000 0,5122 15 / 52,99 100 14,7 = 0,09860 н.

При установлении концентрации серной или соляной кислот по тетраборату натрия (буре) обычно используют метод титрования навесок. Кристаллогидрат буры Na 2 B 4 O 7 10H 2 O должен быть химически чистым и перед установлением по нему концентрации кислоты его подвергают перекристаллизации. Для перекристаллизации 50 г буры растворяют в 275 мл воды при 50-60°C; раствор фильтруют и охлаждают до 25-30°C. Энергично помешивая раствор, вызывают кристаллизацию. Кристаллы отфильтровывают на воронке Бюхнера, растворяют снова и перекристаллизовывают. После фильтрования кристаллы сушат между листами фильтровальной бумаги при температуре воздуха 20°C и относительной влажности воздуха 70%; сушку проводят на воздухе или в эксикаторе над насыщенным раствором хлорида натрия. Высушенные кристаллы не должны прилипать к стеклянной палочке.

Для титрования отбирают в бюкс поочередно 3-4 навески буры с точностью до 0,0002 г и переносят их в конические колбы для титрования, растворяя каждую навеску в 40-50 мл теплой воды при энергичном взбалтывании. После перенесения каждой навески из бюкса в колбу бюкс взвешивают. По разности масс при взвешивании определяют величину каждой навески. Величина отдельной навески буры для установления концентрации 0,1 н. раствора кислоты при применении бюретки емкостью 50 мл должна быть около 0,5 г.

Титрование растворов буры кислотой ведут в присутствии 1-2 капель 0,1%-ного раствора метилового красного до изменения желтой окраски раствора в оранжево-красную или в присутствии раствора смешанного индикатора, состоящего из метилового красного и метиленового синего.

Нормальную концентрацию раствора кислоты рассчитывают по формуле:

N = 1000m н / 190,69V,

где m н - масса навески буры, г;

V - объем раствора кислоты, израсходованный на титрование, мл.

На титрование предполагается израсходовать 15 мл раствора кислоты.

Масса навески буры:

190,69 0,1 15 / 1000 = 0,3 г.

Пример 7. Найти концентрацию раствора соляной кислоты, если для титрования навески буры в 0,4952 г израсходовано 24,38 мл соляной кислоты.

1000 0,4952 / 190,624,38 = 0,1068

Установление концентрации кислоты по раствору едкого натра или едкого кали проводят путем титрования раствором кислоты раствора щелочи в присутствии 1-2 капель 0,1%-ного раствора метилового оранжевого. Однако этот метод установления концентрации кислоты менее точный, чем приведенный выше. Его обычно используют при контрольных проверках концентрации кислот. В качестве исходного раствора часто пользуются раствором щелочи, приготовленным из фиксанала.

Нормальную концентрацию раствора кислоты N 2 рассчитывают по формуле:

N 2 = N 1 V 1 / V 2 ,

где N 1 - нормальная концентрация раствора щелочи;

V 1 - объем раствора щелочи, взятый для титрования;

V 2 - объем раствора кислоты, израсходованный на титрование (средняя величина сходящихся результатов титрования).

Пример 8. Определить концентрацию раствора серной кислоты, если на титрование 25,00 мл 0,1000 н. раствора едкого натра израсходовано 25,43 мл раствора серной кислоты.

Концентрация раствора кислоты.

Приблизительные растворы. В большинстве случаев в лаборатории приходится пользоваться соляной, серной и азотной кислотами. Кислоты имеются в продаже в виде концентрированных растворов, процентное содержание которых определяют по их плотности.

Кислоты, применяемые в лаборатории, бывают технические и чистые. Технические кислоты содержат примеси, а потому при аналитических работах не употребляются.

Концентрированная соляная кислота на воздухе дымит , поэтому работать с ней нужно в вытяжном шкафу. Наиболее концентрированная соляная кислота имеет плотность 1,2 г/см3 и содержит 39,11%" хлористого водорода.

Разбавление кислоты проводят по расчету, описайному выше.

Пример. Нужно приготовить 1 л 5%-ного раствора соляной кислоты, пользуясь раствором ее с плотностью 1,19 г/см3. По справочнику узнаем, что 5%,-ный раствор нмеет плотность 1,024 г/см3; следовательно, 1 л ее будет весить 1,024*1000 = 1024 г. В этом количестве должно содержаться чистого хлористого водорода:


Кислота с плотностью 1,19 г/см3 содержит 37,23% HCl (находим также по справочнику). Чтобы узнать, сколько следует взять этой кислоты, составляют пропорцию:


или 137,5/1,19 = 115,5 кислоты с плотностью 1,19 г/см3, Отмерив 116 мл раствора кислоты, доводят объем его до 1 л.

Так же разбавляют серную кислоту. При разбавлении ее следует помнить, что нужно приливать кислотук воде~, а не наоборот. При разбавлении происходит сильное разогревание, и если приливать воду к кислоте, то возможно разбрызгивание ее, что опасно, так как серная кислота вызывает тяжелые ожоги. Если кислота попала на одежду или обувь, следует быстро обмыть облитое место большим количеством воды, а затем нейтрализовать кислоту углекислым натрием или раствором аммиака. При попадании на кожу рук или лица нужно сразу же обмыть это место большим количеством воды.

Особой осторожности требует обращение с олеумом, представляющим моногидрат серной кислоты, насыщенный серным ангидридом SO3. По содержанию последнего олеум бывает нескольких концентраций.

Следует помнить, что при небольшом охлаждении олеум закристаллизовывается и в жидком состоянии находится только при комнатной температуре. На воздухе он дымит с выделением SO3, который образует пары серной кислоты при взаимодействии с влагой воздуха.

Большие трудности вызывает переливание олеума из крупной тары в мелкую. Эту операцию следует проводить или под тягой, или на воздухе, но там, где образующаяся серная кислота и SO3 не могут оказать какого-либо вредного действия на людей и окружающие предметы.

Если олеум затвердел, его следует вначале нагреть, поместив тару с ним в теплое помещение. Когда олеум расплавится и превратится в маслянистую жидкость, его нужно вынести на воздух и там переливать в более мелкую посуду, пользуясь для этого способом передавлива-ния при помощи воздуха (сухого) или инертного газа (азота).

При смешивании с водой азотной кислоты также происходит разогревание (не такое, правда, сильное, как в случае серной кислоты), и поэтому меры предосторожности должны применяться и при работе с ней.

В лабораторной практике находят применение твердые органические кислоты. Обращение с ними много проще и удобнее, чем с жидкими. В этом случае следует заботиться лишь о том, чтобы кислоты не загрязнялись чем-либо посторонним. При необходимости твердые органические кислоты очищают перекристаллизацией (см, гл. 15 «Кристаллизация»),

Точные растворы. Точные растворы кислот готовят так же, как и приблизительные, с той только разницей, что вначале стремятся получить раствор несколько большей концентрации, чтобы после можно было его точно, по расчету, разбавить. Для точных растворов берут только химически чистые препараты.

Нужное количество концентрированных кислот обычно берут по объему, вычисленному на основании плотности.

Пример. Нужно приготовить 0,1 и. раствор H2SO4. Это значит, что в I л раствора должно содержаться:


Кислота с плотностью 1,84 г\смг содержит 95,6% H2SO4 н для приготовления 1 л 0,1 н. раствора нужно взять следующее количество (х) ее (в г):

Соответствующий объем кислоты составит:



Отмерив из бюретки точно 2,8 мл кислоты, разбавляют ее до 1 л в мерной колбе и затем титруют раствором щелочи п устанавливают нормальность полученного раствора. Если раствор получится более концентрированный), к нему добавляют из бюретки рассчитанное количество воды. Например, при титровании установлено, что 1 мл 6,1 н. раствора H2SO4 содержит не 0,0049 г H2SO4, а 0,0051 г. Для вычисления количества воды, которое необходимо для приготовления точно 0,1 н. раствора, составляем пропорцию:

Расчет показывает, что этот объем равен 1041 мл раствор нужно добавить 1041 - 1000 = 41 мл воды. Следует еще учесть то количество раствора, которое взято для титрования. Пусть взято 20 мл, что составляет 20/1000 = 0,02 от имеющегося объема. Следовательно, воды нужно добавить не 41 мл, а меньше: 41 - (41*0,02) = = 41 -0,8 = 40,2 мл.

* Для отмеривания кислоты пользуются тщательно высушенной бюреткой с притертым краном. .

Исправленный раствор следует снова проверить на содержание вещества, взятого для растворения. Точные растворы соляной кислоты готовят также ионообменным способом, исходя из точной рассчитанной навески хлористого натрия. Рассчитанную и отвешенную на аналитических весах навеску растворяют в дистиллированной или деминерализованной воде, полученный раствор пропускают через хроматографическую колонку, наполненную катионитом в Н-форме. Раствор, вытекающий из колонки, будет содержать эквивалентное количество HCl.

Как правило, точные (или титрованные) растворы следует сохранять в плотно закрытых колбах, В пробку сосуда обязательно нужно вставлять хлоркальциевую трубку, заполненную в случае раствора щелочи натронной известью или аскаритом, а в случае кислоты - хлористым кальцием или просто ватой.

Для проверки нормальности кислот часто применяют прокаленный углекислый натрий Na2COs. Однако он обладает гигроскопичностью и поэтому не полностью удовлетворяет требованиям аналитиков. Значительно удобнее пользоваться для этих целей кислым углекислым калием KHCO3, высушенным в эксикаторе над CaCl2.

При титровании полезно пользоваться «свидетелем», для приготовления которого в дистиллированную или деминерализованную воду добавляют одну каплю кислоты (если титруют щелочь) или щелочи (если титруют кислоту) и столько капель индикаторного раствора, сколько добавлено в титруемый раствор.

Приготовление эмпирических, по определяемому веществу, и стандартных растворов, кислот проводят по расчету с применением формул, приведенных для этих и описанных выше случаев.

Приготовление растворов. Раствором называют однородные смеси двух или более веществ. Концентрацию раствора выражают по-разному:

в весовых процентах, т.е. по количеству граммов вещества, содержащегося в 100 г раствора;

в объемных процентах, т.е. по количеству единиц объема (мл) вещества в 100 мл раствора;

молярностью, т.е. количеством грамм-молей вещества, находящегося в 1 л раствора (молярные растворы);

нормальностью, т.е. количеством грамм-эквивалентов раствореного вещества в 1 л раствора.

Растворы процентной концентрации. Процентные растворы готовят как приблизительные, при этом навеску вещества отвешивают на технохимических весах, а объемы отмеривают измерительными цилиндрами.

Для приготовления процентных растворов пользуются несколькими приемами.

Пример. Необходимо приготовить 1 кг 15%-ного раствора хлористого натрия. Сколько необходимо для этого взять соли? Расчет проводится согласно пропорции:

Следовательно воды для этого необходимо взять 1000-150 = 850 г.

В тех случаях, когда надо приготовить 1 л 15%-ного раствора хлористого натрия, необходимое количество соли рассчитывают другим способом. По справочнику находят плотность этого раствора и, умножив ее на заданный объем, получают массу необходимого количества раствора: 1000-1,184 = 1184 г.

Тогда следует:

Следовательно, необходимое количество хлористого натрия различно для приготовления 1 кг и 1 л раствора. В тех случаях, когда приготовляют растворы из реактивов, содержащих в составе кристаллизационную воду, следует ее учитывать при расчете необходимого количества реактива.

Пример. Необходимо приготовить 1000 мл 5%-ного раствора Na2CO3 плотностью 1,050 из соли, содержащей кристаллизационную воду (Na2CO3-10H2O)

Молекулярная масса (вес) Na2CO3 равна 106 г, молекулярная масса (вес) Na2CO3-10H2O равна 286 г, отсюда рассчитывают необходимое количество Na2CO3-10H2O для приготовления 5%-ного раствора:

Методом разбавления растворы приготовляют следующим образом.

Пример. Необходимо приготовить 1 л 10%-ного раствора HCl из раствора кислоты относительной плотностью 1,185 (37,3%). Относительная плотность 10%-ного раствора 1,047 (по справочной таблице), следовательно, масса (вес) 1 л такого раствора равна 1000X1,047 = 1047 г. В этом количестве раствора должно содержаться чистого хлористого водорода

Чтобы определить, сколько необходимо взять 37,3%-ной кислоты, составляем пропорцию:

При приготовлении растворов путем разбавления или смешивания двух растворов для упрощения расчетов применяют способ диагональной схемы или «правило креста». На пересечении двух линий пишется заданная концентрация, а у обоих концов слева - концентрация исходных растворов, для растворителя она равна нулю.

Химия - увлекательная наука. Те, кто интересуются не только теорией, но и пробует свои навыки на практике, точно знают, о чем идет речь. С большинством элементов из таблицы Менделеева знаком каждый школьник. Но всем ли удалось попробовать на собственном опыте смешивать реагенты и проводить химические испытания? Даже сегодня не во всех современных школах имеется в наличии необходимое оборудование и реагенты, потому химия остается наукой открытой для самостоятельного изучения. Многие стремятся познать ее глубже, проводя исследования в домашних условиях.

Ни один самодельщик не обойдется без азотной кислоты - крайне важной в хозяйстве вещи. Достать вещество сложно: приобрести его можно только в специализированном магазине, где покупка осуществляется по подтверждающим мирное использование вещества документам. Потому если вы мастер-самоделка, достать этот компонент, скорее всего, не получится. Здесь и возникает вопрос о том, как сделать азотную кислоту в домашних условиях. Процесс вроде не отличается сложностью, тем не менее на выходе должно получиться вещество достаточного уровня чистоты и необходимой концентрации. Здесь без навыков химика-экспериментатора никак не обойтись.

Где используется вещество?

Применение азотной кислоты разумно в безопасных целях. Вещество используется в таких сферах деятельности человека:

  • создание красящих пигментов;
  • проявление фотопленок;
  • приготовление лекарственных препаратов;
  • переработка пластиковых изделий;
  • использование в химии;
  • удобрение садовых и огородных культур;
  • производство динамита.

Чистая азотная кислота в неизмененном виде выглядит как жидкое вещество, которое при контакте с воздухом начинает выпускать белые пары. Замерзание его происходит уже при -42 о С, а кипение - при +80 о С. Как вывести такое вещество, как азотная кислота, своими руками в домашних условиях?

Способ 1

Дымящееся вещество получают посредством воздействия концентрата на натриевую (калийную) селитру (натрий (калий) нитрат). В результате реакции получается искомое вещество и гидросульфат натрия (калия). Схема реакции выглядит таким образом: NaNO 3 + H 2 SO 4 => HNO 3 + NaHSO 4. Запомните, что концентрация полученного вещества зависит от перед вступлением в реакцию.

Способ 2

Получение азотной кислоты в домашних условиях с меньшей концентрацией вещества происходит тем же способом, необходимо только заменить натриевую селитру нитратом аммония. Химическое уравнение выглядит так: NH 4 NO 3 + H 2 SO 4 =>(NH 4) 2 SO 4 + HNO 3 . Заметьте, что аммиачная селитра доступнее, чем калийная или натриевая, потому большинство исследователей проводят реакцию на ее основе.

Чем выше концентрация H 2 SO 4 , тем более концентрированной будет азотная кислота. Чтобы получить сбалансированное вещество, требуется увеличить объем электролита, необходимого для проведения реакции. Чтобы достичь желаемого результата, на практике пользуются методом выпаривания, который заключается в постепенном уменьшении объема электролита примерно в 4 раза от первоначального.

Особенности метода выпаривания

На дно посуды высыпают просеянный песок и ставят резервуар с электролитом. При этом процесс кипячения регулируют вентилем газовой плиты, поддавая или уменьшая огонь. Процесс отличается длительностью, поэтому в таком деле важно терпение. Эксперты рекомендуют использовать кипелки - стеклянные или керамические трубочки, предназначенные для проведения химических опытов, в том числе и выпаривания. Они нейтрализуют образование пузырей и снижают силу кипения, предотвращая разбрызгивание вещества. В таких условиях допустимо получение азотной кислоты в домашних условиях с концентрацией около 93 %.

Инструменты и реагенты для практического получения вещества

Для проведения реакции потребуется наличие:

  • концентрированного H 2 SO 4 (>95%) - 50 мл;
  • нитрата аммония, калия, натрия;
  • 100 мл емкости;
  • 1000 мл контейнера;
  • стеклянной воронки;
  • резинки;
  • водяной бани;
  • колотого льда (можно заменить на снег или холодную воду);
  • термометра.

Получение азотной кислоты в домашних условиях, как и проведение любой другой химической реакции, требует соблюдения мер предосторожности:

  • В процессе получения азотной кислоты в домашних условиях необходимо поддерживать температуру в рамках 60-70 о С. Если превысить эти границы, кислота начнет распадаться.
  • Во время проведения реакции могут выделяться пары и газы, поэтому, работая с кислотами, обязательно пользуйтесь защитной маской. Руки должны быть защищены от внезапного попадания вещества на кожу, потому химики работают в резиновых перчатках. На больших химических производствах, где человек контактирует с опасными для здоровья веществами, рабочие вообще работают в специальных защитных костюмах.

Теперь вы знаете, как получить азотную кислоту в процессе проведения простой реакции. Будьте осторожны с использованием такого вещества и применяйте его только в мирных целях.


Для приготовления раствора необходимо смешать расчетные количества кислоты известной концентрации и дистиллированной воды.

Пример.

Необходимо приготовить 1 л раствора HCL концентрацией 6 % вес. из соляной кислоты концентрацией 36 % вес. (такой раствор используется в карбонатомерах КМ производства ООО НПП «Геосфера») .
По таблице 2 определите молярную концентрацию кислоты с весовой долей 6 % вес.(1,692 моль/л) и 36 % вес.(11,643 моль/л).
Рассчитайте объем концентрированной кислоты, содержащей такое же количество HCl (1.692 г-экв.), что и в приготавливаемом растворе:

1,692 / 11,643 = 0,1453 л.

Следовательно, добавив 145 мл кислоты (36 % вес.) в 853 мл дистиллированной воды, получите раствор заданной весовой концентрации.

Опыт 5. Приготовление водных растворов соляной кислоты заданной молярной концентрации.

Для приготовления раствора с нужной молярной концентрацией (Mp) необходимо один объем концентрированной кислоты (V) влить в объем (Vв) дистиллированной воды, рассчитанный по соотношению

Vв = V(M/Mp – 1)

где M – молярная концентрация исходной кислоты.
Если концентрация кислоты не известна, определите ее по плотности, используя таблицу 2 .

Пример.

Весовая концентрация используемой кислоты 36,3 % вес. Необходимо приготовить 1 л водного раствора HCL с молярной концентрацией 2,35 моль/л.
По таблице 1 найдите интерполированием значений 12,011 моль/л и 11,643 моль/л молярную концентрацию используемой кислоты:

11,643 + (12,011 – 11,643)·(36,3 – 36,0) = 11,753 моль/л

По приведенной выше формуле рассчитайте объем воды:

Vв = V (11,753 / 2,35 – 1) = 4·V

Принимая Vв + V = 1 л, получите значения объемов: Vв = 0,2 л и V = 0,8 л.

Следовательно, для приготовления раствора с молярной концентрацией 2,35 моль/л, нужно влить 200 мл HCL (36,3 % вес.) в 800 мл дистиллированной воды.

Вопросы и задания:


  1. Что такое концентрация раствора?

  2. Что такое нормальность раствора?

  3. Сколько граммов серной кислоты содержится в растворе, если на нейтрализацию израсходовано 20 мл. раствора гидроксида натрия, титр которого равен 0,004614?
ЛПЗ №5: Определение остаточного активного хлора.

Материалы и оборудование:

Ход работы:

Йодометрический метод

Реактивы:

1. Йодистый калий химически чистый кристаллический, не содержащий свободного йода.

Проверка. Взять 0,5 г йодистого калия, растворить в 10 мл дистиллированной воды, прибавить 6 мл буферной смеси и 1 мл 0,5% раствора крахмала. Посинения реактива быть не должно.

2. Буферная смесь: рН = 4.6. Смешать 102 мл молярного раствора уксусной кислоты (60 г 100% кислоты в 1 л воды) и 98 мл молярного раствора уксуснокислого натрия (136,1 г кристаллической соли в 1 л воды) и довести до 1 л дистиллированной водой, предварительно прокипяченой.

3. 0,01 Н раствор гипосульфита натрия.

4. 0,5% раствор крахмала.

5. 0,01 Н раствор двухромовокислого калия. Установка титра 0,01 Н раствора гипосульфита производится следующим образом: в колбу всыпают 0,5 г чистого йодистого калия, растворяют в 2 мл воды, прибавляют сначала 5 мл соляной кислоты (1:5), затем 10 мл 0,01 Н раствора двухромовокислого калия и 50 мл дистиллированной воды. Выделившийся йод титруют гипосульфитом натрия в присутствии 1 мл раствора крахмала, прибавляемого под конец титрования. Поправочный коэффициент к титру гипосульфита натрия рассчитывается по следующей формуле: К = 10/а, где а - количество миллилитров гипосульфита натрия, пошедшего на титрование.

Ход анализа:

а) ввести в коническую колбу 0,5 г йодистого калия;

б) прилить 2 мл дистиллированной воды;

в) перемешать содержимое колбы до растворения йодистого калия;

г) прилить 10 мл буферного раствора, если щелочность исследуемой воды не выше 7 мг/экв. Если щелочность исследуемой воды выше 7 мг/экв, то количество миллилитров буферного раствора должно быть в 1,5 раза больше щелочности исследуемой воды;

д) прилить 100 мл исследуемой воды;

е) титровать гипосульфитом до бледно-желтой окраски раствора;

ж) прилить 1 мл крахмала;

з) титровать гипосульфитом до исчезновения синей окраски.

Х = 3,55  Н  К

где Н - количество мл гипосульфита, израсходованное на титрование,

К - поправочный коэффициент к титру гипосульфита натрия.

Вопросы и задания:


  1. Что представляет собой йодометрический метод?

  2. Что такое рН?

ЛПЗ №6: Определение хлорид иона

Цель работы:

Материалы и оборудование: вода питьевая, лакмусовая бумага, беззольный фильтр, хромовокислый калий, азотнокислое серебро, титрованный раствор хлорида натрия,

Ход работы:

В зависимости от результатов качественного определения отбирают 100 см 3 испытуемой воды или меньший ее объем (10-50 см 3) и доводят до 100 см 3 дистиллированной водой. Без разбавления определяются хлориды в концентрации до 100 мг/дм 3 . pН титруемой пробы должен быть в пределах 6-10. Если вода мутная, ее фильтруют через беззольный фильтр, промытый горячей водой. Если вода имеет цветность выше 30°, пробу обесцвечивают добавлением гидроокиси алюминия. Для этого к 200 см 3 пробы добавляют 6 см 3 суспензии гидроокиси алюминия, а смесь встряхивают до обесцвечивания жидкости. Затем пробу фильтруют через беззольный фильтр. Первые порции фильтрата отбрасывают. Отмеренный объем воды вносят в две конические колбы и прибавляют по 1 см 3 раствора хромовокислого калия. Одну пробу титруют раствором азотнокислого серебра до появления слабого оранжевого оттенка, вторую пробу используют в качестве контрольной пробы. При значительном содержании хлоридов образуется осадок AgCl , мешающий определению. В этом случае к оттитрованной первой пробе приливают 2-3 капли титрованного раствора NaCl до исчезновения оранжевого оттенка, затем титруют вторую пробу, пользуясь первой, как контрольной пробой.

Определению мешают: ортофосфаты в концентрации, превышающей 25 мг/дм 3 ; железо в концентрации более 10 мг/дм 3 . Бромиды и йодиды определяются в концентрациях, эквивалентных Сl - . При обычном содержании в водопроводной воде они не мешают определению.

2.5. Обработка результатов.

где v - количество азотнокислого серебра, израсходованное на титрование, см 3 ;

К - поправочный коэффициент к титру раствора нитрата серебра;

g - количество хлор-иона, соответствующее 1 см 3 раствора азотнокислого серебра, мг;

V - объем пробы, взятый для определения, см 3 .

Вопросы и задания:


  1. Способы определения хлорид ионов?

  2. Кондуктометрический метод определения хлорид ионов?

  3. Аргентометрия.
ЛПЗ №7 «Определение общей жесткости воды»

Цель работы:

Материалы и оборудование:

Опыт 1. Определение общей жесткости водопроводной воды

Отмерить мерным цилиндром 50 мл водопроводной воды (из-под крана) и перелить её в колбу емкостью 250 мл, добавить 5 мл аммиачно-буферного раствора и индикатор – эриохром черный Т – до появления розовой окраски (несколько капель или несколько кристаллов). Заполнить бюретку раствором ЭДТА 0,04 н (синонимы – трилон Б, комплексон III) до нулевой отметки.

Приготовленную пробу медленно при постоянном перемешивании оттитровать раствором комплексона III до перехода розовой окраски в голубую. Результат титрования записать. Повторить титрование ещё один раз.

Если разница результатов титрований превышает 0,1 мл, то оттитровать пробу воды третий раз. Определить средний объем комплексона III (V К, СР) израсходованного на титрование воды, и по нему рассчитать общую жесткость воды.

Ж ОБЩ = , (20) где V 1 – объём анализируемой воды, мл; V К,СР – средний объём раствора комплексона III, мл; N К – нормальная концентрация раствора комплексона III, моль/л; 1000 – коэффициент перевода моль/л в ммоль/л.

Результаты опыта записать в таблицу:


V К,СР

N К

V 1

Ж ОБЩ

Пример 1. Вычислить жесткость воды, зная, что в 500 л её содержится 202,5 г Ca(HCO 3) 2 .

Решение. В 1 л воды содержится 202,5:500 = 0,405 г Ca(HCO 3) 2 . Эквивалентная масса Ca(HCO 3) 2 равна 162:2 = 81 г/моль. Следовательно, 0,405 г составляют 0,405:81 = 0,005 эквивалентных масс или 5 ммоль экв/л.

Пример 2. Сколько граммов CaSO 4 содержится в одном кубометре воды, если жесткость, обусловленная присутствием этой соли, равна 4 ммоль эк

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какие катионы называются ионами жесткости?

2. Какой технологический показатель качества воды называют жесткостью?

3. Почему жесткую воду нельзя применять для регенерации пара на тепловых и атомных электростанциях?

4. Какой метод умягчения называют термическим? Какие химические реакции протекают при умягчении воды этим методом?

5. Как осуществляют умягчения воды методом осаждения? Какие реагенты используют? Какие реакции протекают?

6. Можно ли умягчать воду с помощью ионного обмена?

ЛПЗ №8 «Фотоколориметрическое определение содержания элементов в растворе»

Цель работы: изучить устройство и принцип действия фотоколориметра КФК - 2

ФОТОЭЛЕКТРОКОЛОРИМЕТРЫ. Фотоэлектроколориметр – это оптический прибор, в котором монохроматизация потока излучения осуществляется с помощью светофильтров. Колориметр фотоэлектрический концентрационный КФК – 2.

Назначение и технические данные. Однолучевой фотоколориметр КФК - 2

предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315–980 нм. Весь спектральный диапазон разбит на спектральные интервалы, выделяемые с помощью светофильтров. Пределы измерения пропускания от 100 до 5% (оптической плотности от 0 до 1,3). Основная абсолютная погрешность измерения пропускания не более 1%. Рис. Общий вид КФК-2. 1 - осветитель; 2 - рукоятка ввода цветных светофильтров; 3 - кюветное отделение; 4 - рукоятка перемещения кювет; 5 - рукоятка (ввода фотоприемников в световой поток) «Чувствительность»; 6 - рукоятка настройки прибора на 100%-е пропуска- ние; 7 - микроамперметр. Светофильтры. Для того чтобы из всей видимой области спектра выделить лучи определенных длин волн в фотоколориметрах на пути световых потоков перед поглощающими растворами устанавливают избирательные поглотители света – светофильтры. Порядок работы

1. Включите колориметр в сеть за 15 минут до начала измерений. Во время прогрева кюветное отделение должно быть открыто (при этом шторка перед фотоприемником перекрывает световой пучок).

2. Введите рабочий светофильтр.

3. Установите минимальную чувствительность колориметра. Для этого ручку "ЧУВСТВИТЕЛЬНОСТЬ" установите в положение «1», ручку "УСТАНОВКА 100 ГРУБО" – в крайнее левое положение.

4. Стрелку колориметра вывести на нуль с помощью потенциометра «НУЛЬ».

5. В световой пучок поместите кювету с контрольным раствором.

6. Закройте крышку кюветного отделения

7. Ручками "ЧУВСТВИТЕЛЬНОСТЬ" и "УСТАНОВКА 100 ГРУБО" и "ТОЧ- НО" установите стрелку микроамперметра на деление «100» шкалы пропускания.

8. Поворотом рукоятки кюветной камеры поместите в световой поток кювету с исследуемым раствором.

9. Снимите показания по шкале колориметра в соответствующих единицах (Т% или Д).

10. После окончания работы отключите колориметр от сети, очистите и протрите насухо кюветную камеру. Определение концентрации вещества в растворе с помощью КФК-2. При определении концентрации вещества в растворе с помощью калибро- вочного графика следует соблюдать следующую последовательность:

исследуйте три образца раствора перманганата калия различной концентрации результаты запишите в журнал.

Вопросы и задания:


    1. Устройство и принцип действия КФК – 2
5.Информационное обеспечение обучения (перечень рекомендуемых учебных из­даний. Интернет-ресурсов, дополнительной литературы)

Основная литература для студентов:

1. Курс опорных конспектов по программе ОП.06 Основы аналитической химии.-пособие /А.Г.Бекмухамедова- преподаватель общепрофессиональных дисциплин АСХТ- Филиал ФГБОУ ВПО ОГАУ; 2014г.

Дополнительная литература для студентов:

1.Клюквина Е.Ю. Основы общей и неорганической химии: учебное пособие/ Е.Ю. Клюквина, С.Г.Безрядин.-2-е изд.-Оренбург. Издательский центр ОГАУ,2011г.-508 стр.

Основная литература для преподавателей:

1. 1.Клюквина Е.Ю. Основы общей и неорганической химии: учебное пособие/ Е.Ю. Клюквина, С.Г.Безрядин.-2-е изд.- Оренбург. Издательский центр ОГАУ,2011г.-508 стр.

2.Клюквина Е.Ю. Лабораторная тетрадь по аналитической химии.- Оренбург: Издательский центр ОГАУ, 2012 г.-68 стр

Дополнительная литература для преподавателей:

1. 1.Клюквина Е.Ю. Основы общей и неорганической химии: учебное пособие/ Е.Ю. Клюквина, С.Г.Безрядин.-2-е изд.-Оренбург. Издательский центр ОГАУ,2011г.-508 стр.

2.Клюквина Е.Ю. Лабораторная тетрадь по аналитической химии.- Оренбург: Издательский центр ОГАУ, 2012 г.-68 стр